Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961175

RESUMEN

Injured nervous systems are often incapable of self-repairing, resulting in permanent loss of function and disability. To restore function, a severed axon must not only regenerate, but must also reform synapses with target cells. Together, these processes beget functional axon regeneration. Progress has been made towards a mechanistic understanding of axon regeneration. However, the molecular mechanisms that determine whether and how synapses are formed by a regenerated motor axon are not well understood. Using a combination of in vivo laser axotomy, genetics, and high-resolution imaging, we find that poly (ADP-ribose) polymerases (PARPs) inhibit synapse reformation in regenerating axons. As a result, regenerated parp(-) axons regain more function than regenerated wild-type axons, even though both have reached their target cells. We find that PARPs regulate both axon regeneration and synapse reformation in coordination with proteolytic calpain CLP-4. These results indicate approaches to functionally repair the injured nervous system must specifically target synapse reformation, in addition to other components of the injury response.

2.
Curr Biol ; 33(20): 4430-4445.e6, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37769660

RESUMEN

Animals generate a wide range of highly coordinated motor outputs, which allows them to execute purposeful behaviors. Individual neurons in the circuits that generate behaviors have a remarkable capacity for flexibility as they exhibit multiple axonal projections, transmitter systems, and modes of neural activity. How these multi-functional properties of neurons enable the generation of adaptive behaviors remains unknown. Here, we show that the HSN neuron in C. elegans evokes multiple motor programs over different timescales to enable a suite of behavioral changes during egg laying. Using HSN activity perturbations and in vivo calcium imaging, we show that HSN acutely increases egg laying and locomotion while also biasing the animals toward low-speed dwelling behavior over minutes. The acute effects of HSN on egg laying and high-speed locomotion are mediated by separate sets of HSN transmitters and different HSN axonal compartments. The long-lasting effects on dwelling are mediated in part by HSN release of serotonin, which is taken up and re-released by NSM, another serotonergic neuron class that directly evokes dwelling. Our results show how the multi-functional properties of a single neuron allow it to induce a coordinated suite of behaviors and also reveal that neurons can borrow serotonin from one another to control behavior.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/fisiología , Neuronas Motoras/fisiología , Serotonina/fisiología , Oviposición/fisiología , Neuronas Serotoninérgicas
3.
Elife ; 122023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37083456

RESUMEN

Growth and destruction are central components of the neuronal injury response. Injured axons that are capable of repair, including axons in the mammalian peripheral nervous system and in many invertebrate animals, often regenerate and degenerate on either side of the injury. Here we show that TIR-1/dSarm/SARM1, a key regulator of axon degeneration, also inhibits regeneration of injured motor axons. The increased regeneration in tir-1 mutants is not a secondary consequence of its effects on degeneration, nor is it determined by the NADase activity of TIR-1. Rather, we found that TIR-1 functions cell-autonomously to regulate each of the seemingly opposite processes through distinct interactions with two MAP kinase pathways. On one side of the injury, TIR-1 inhibits axon regeneration by activating the NSY-1/ASK1 MAPK signaling cascade, while on the other side of the injury, TIR-1 simultaneously promotes axon degeneration by interacting with the DLK-1 mitogen-activated protein kinase (MAPK) signaling cascade. In parallel, we found that the ability to cell-intrinsically inhibit axon regeneration is conserved in human SARM1. Our finding that TIR-1/SARM1 regulates axon regeneration provides critical insight into how axons coordinate a multidimensional response to injury, consequently informing approaches to manipulate the response toward repair.


Asunto(s)
Axones , Regeneración Nerviosa , Animales , Humanos , Axones/metabolismo , Neuronas/metabolismo , Sistema de Señalización de MAP Quinasas , Mamíferos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo
4.
bioRxiv ; 2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37034579

RESUMEN

Animals generate a wide range of highly coordinated motor outputs, which allows them to execute purposeful behaviors. Individual neuron classes in the circuits that generate behavior have a remarkable capacity for flexibility, as they exhibit multiple axonal projections, transmitter systems, and modes of neural activity. How these multi-functional properties of neurons enable the generation of highly coordinated behaviors remains unknown. Here we show that the HSN neuron in C. elegans evokes multiple motor programs over different timescales to enable a suite of behavioral changes during egg-laying. Using HSN activity perturbations and in vivo calcium imaging, we show that HSN acutely increases egg-laying and locomotion while also biasing the animals towards low-speed dwelling behavior over longer timescales. The acute effects of HSN on egg-laying and high-speed locomotion are mediated by separate sets of HSN transmitters and different HSN axonal projections. The long-lasting effects on dwelling are mediated by HSN release of serotonin that is taken up and re-released by NSM, another serotonergic neuron class that directly evokes dwelling. Our results show how the multi-functional properties of a single neuron allow it to induce a coordinated suite of behaviors and also reveal for the first time that neurons can borrow serotonin from one another to control behavior.

5.
Elife ; 102021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34184985

RESUMEN

Sterile alpha and toll/interleukin receptor (TIR) motif-containing protein 1 (SARM1) is a neuronally expressed NAD+ glycohydrolase whose activity is increased in response to stress. NAD+ depletion triggers axonal degeneration, which is a characteristic feature of neurological diseases. Notably, loss of SARM1 is protective in murine models of peripheral neuropathy and traumatic brain injury. Herein, we report that citrate induces a phase transition that enhances SARM1 activity by ~2000-fold. This phase transition can be disrupted by mutating a residue involved in multimerization, G601P. This mutation also disrupts puncta formation in cells. We further show that citrate induces axonal degeneration in C. elegans that is dependent on the C. elegans orthologue of SARM1 (TIR-1). Notably, citrate induces the formation of larger puncta indicating that TIR-1/SARM1 multimerization is essential for degeneration in vivo. These findings provide critical insights into SARM1 biology with important implications for the discovery of novel SARM1-targeted therapeutics.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/efectos de los fármacos , Ácido Cítrico/administración & dosificación , NAD+ Nucleosidasa/genética , Transición de Fase , Receptores Acoplados a Proteínas G/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , NAD+ Nucleosidasa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
6.
PLoS Genet ; 15(1): e1007863, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30640919

RESUMEN

Many neurons are unable to regenerate after damage. The ability to regenerate after an insult depends on life stage, neuronal subtype, intrinsic and extrinsic factors. C. elegans is a powerful model to test the genetic and environmental factors that affect axonal regeneration after damage, since its axons can regenerate after neuronal insult. Here we demonstrate that diapause promotes the complete morphological regeneration of truncated touch receptor neuron (TRN) axons expressing a neurotoxic MEC-4(d) DEG/ENaC channel. Truncated axons of different lengths were repaired during diapause and we observed potent axonal regrowth from somas alone. Complete morphological regeneration depends on DLK-1 but neuronal sprouting and outgrowth is DLK-1 independent. We show that TRN regeneration is fully functional since animals regain their ability to respond to mechanical stimulation. Thus, diapause induced regeneration provides a simple model of complete axonal regeneration which will greatly facilitate the study of environmental and genetic factors affecting the rate at which neurons die.


Asunto(s)
Axones , Proteínas de Caenorhabditis elegans/genética , Quinasas Quinasa Quinasa PAM/genética , Proteínas de la Membrana/genética , Regeneración Nerviosa/genética , Malformaciones del Sistema Nervioso/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Diapausa/genética , Diapausa/fisiología , Regulación del Desarrollo de la Expresión Génica , Necrosis/genética , Necrosis/patología , Malformaciones del Sistema Nervioso/fisiopatología , Malformaciones del Sistema Nervioso/rehabilitación , Células Receptoras Sensoriales/metabolismo , Tacto/genética
7.
Dev Neurobiol ; 78(10): 978-990, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30022605

RESUMEN

Neurons face a series of morphological and molecular changes following trauma and in the progression of neurodegenerative disease. In neurons capable of mounting a spontaneous regenerative response, including invertebrate neurons and mammalian neurons of the peripheral nervous system (PNS), axons regenerate from the proximal side of the injury and degenerate on the distal side. Studies of Wallerian degeneration slow (WldS /Ola) mice have revealed that a level of coordination between the processes of axon regeneration and degeneration occurs during successful repair. Here, we explore how shared cellular and molecular pathways that regulate both axon regeneration and degeneration coordinate the two distinct outcomes in the proximal and distal axon segments. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.


Asunto(s)
Axones/fisiología , Calpaína/metabolismo , Mitocondrias/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos del Sistema Nervioso/metabolismo , Degeneración Walleriana/metabolismo , Animales , Ratones
8.
Exp Neurol ; 287(Pt 3): 300-309, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27569538

RESUMEN

How axons repair themselves after injury is a fundamental question in neurobiology. With its conserved genome, relatively simple nervous system, and transparent body, C. elegans has recently emerged as a productive model to uncover the cellular mechanisms that regulate and execute axon regeneration. In this review, we discuss the strengths and weaknesses of the C. elegans model of regeneration. We explore the technical advances that enable the use of C. elegans for in vivo regeneration studies, review findings in C. elegans that have contributed to our understanding of the regeneration response across species, discuss the potential of C. elegans research to provide insight into mechanisms that function in the injured mammalian nervous system, and present potential future directions of axon regeneration research using C. elegans.


Asunto(s)
Degeneración Nerviosa/patología , Regeneración Nerviosa/fisiología , Animales , Axones/fisiología , Caenorhabditis elegans , Modelos Animales de Enfermedad , Degeneración Nerviosa/fisiopatología , Neuronas/fisiología
9.
eNeuro ; 3(6)2016.
Artículo en Inglés | MEDLINE | ID: mdl-28032120

RESUMEN

After traumatic damage of the brain or spinal cord, many surviving neurons are disconnected, and recovery of function is limited by poor axon regeneration. Recent data have suggested that poly ADP-ribosylation plays a role in limiting axonal regrowth such that inhibition of poly (ADP-ribose) polymerase (PARP) may have therapeutic efficacy for neurological recovery after trauma. Here, we tested systemic administration of the PARP inhibitor, veliparib, and showed effective suppression of PARylation in the mouse CNS. After optic nerve crush injury or dorsal hemisection of the thoracic spinal cord in mice, treatment with veliparib at doses with pharmacodynamic action had no benefit for axonal regeneration or functional recovery. We considered whether PARP gene family specificity might play a role. In vitro mouse cerebral cortex axon regeneration experiments revealed that short hairpin RNA (shRNA)-mediated suppression of PARP1 promoted axonal regeneration, whereas suppression of other PARP isoforms either had no effect or decreased regeneration. Therefore, we examined recovery from neurological trauma in mice lacking PARP1. No increase of axonal regeneration was observed in Parp1-/- mice after optic nerve crush injury or dorsal hemisection of the thoracic spinal cord, and there was no improvement in motor function recovery. Thus, comprehensive in vivo analysis reveals no indication that clinical PARP inhibitors will on their own provide benefit for recovery from CNS trauma.


Asunto(s)
Axones/efectos de los fármacos , Bencimidazoles/farmacología , Regeneración Nerviosa/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Recuperación de la Función/efectos de los fármacos , Animales , Axones/enzimología , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/enzimología , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Femenino , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/enzimología , Traumatismos del Nervio Óptico/patología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/enzimología , Traumatismos de la Médula Espinal/patología , Vértebras Torácicas
10.
Elife ; 52016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27697151

RESUMEN

The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Axones/fisiología , Glicósido Hidrolasas/metabolismo , Poli ADP Ribosilación , Regeneración , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/fisiología
11.
Neuron ; 81(3): 561-73, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24440228

RESUMEN

The ability of injured axons to regenerate declines with age, yet the mechanisms that regulate axon regeneration in response to age are not known. Here we show that axon regeneration in aging C. elegans motor neurons is inhibited by the conserved insulin/IGF1 receptor DAF-2. DAF-2's function in regeneration is mediated by intrinsic neuronal activity of the forkhead transcription factor DAF-16/FOXO. DAF-16 regulates regeneration independently of lifespan, indicating that neuronal aging is an intrinsic, neuron-specific, and genetically regulated process. In addition, we found that DAF-18/PTEN inhibits regeneration independently of age and FOXO signaling via the TOR pathway. Finally, DLK-1, a conserved regulator of regeneration, is downregulated by insulin/IGF1 signaling, bound by DAF-16 in neurons, and required for both DAF-16- and DAF-18-mediated regeneration. Together, our data establish that insulin signaling specifically inhibits regeneration in aging adult neurons and that this mechanism is independent of PTEN and TOR.


Asunto(s)
Envejecimiento/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Degeneración Nerviosa/fisiopatología , Regeneración Nerviosa/fisiología , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Inmunosupresores/farmacología , Factor I del Crecimiento Similar a la Insulina/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Regeneración Nerviosa/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
J Gerontol A Biol Sci Med Sci ; 68(5): 521-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23051979

RESUMEN

Bivalve molluscs are newly discovered models of successful aging. Here, we test the hypothesis that extremely long-lived bivalves are not uniquely resistant to oxidative stressors (eg, tert-butyl hydroperoxide, as demonstrated in previous studies) but exhibit a multistress resistance phenotype. We contrasted resistance (in terms of organismal mortality) to genotoxic stresses (including topoisomerase inhibitors, agents that cross-link DNA or impair genomic integrity through DNA alkylation or methylation) and to mitochondrial oxidative stressors in three bivalve mollusc species with dramatically differing life spans: Arctica islandica (ocean quahog), Mercenaria mercenaria (northern quahog), and the Atlantic bay scallop, Argopecten irradians irradians (maximum species life spans: >500, >100, and ~2 years, respectively). With all stressors, the short-lived A i irradians were significantly less resistant than the two longer lived species. Arctica islandica were consistently more resistant than M mercenaria to mortality induced by oxidative stressors as well as DNA methylating agent nitrogen mustard and the DNA alkylating agent methyl methanesulfonate. The same trend was not observed for genotoxic agents that act through cross-linking DNA. In contrast, M mercenaria tended to be more resistant to epirubicin and genotoxic stressors, which cause DNA damage by inhibiting topoisomerases. To our knowledge, this is the first study comparing resistance to genotoxic stressors in bivalve mollusc species with disparate longevities. In line with previous studies of comparative stress resistance and longevity, our data extends, at least in part, the evidence for the hypothesis that an association exists between longevity and a general resistance to multiplex stressors, not solely oxidative stress. This work also provides justification for further investigation into the interspecies differences in stress response signatures induced by a diverse array of stressors in short-lived and long-lived bivalves, including pharmacological agents that elicit endoplasmic reticulum stress and cellular stress caused by activation of innate immunity.


Asunto(s)
Bivalvos/genética , Daño del ADN , Longevidad/genética , Animales , Bivalvos/fisiología , Fenotipo
13.
J Vis Exp ; (51)2011 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21633331

RESUMEN

Neurons communicate with other cells via axons and dendrites, slender membrane extensions that contain pre- or post-synaptic specializations. If a neuron is damaged by injury or disease, it may regenerate. Cell-intrinsic and extrinsic factors influence the ability of a neuron to regenerate and restore function. Recently, the nematode C. elegans has emerged as an excellent model organism to identify genes and signaling pathways that influence the regeneration of neurons(1-6). The main way to initiate neuronal regeneration in C. elegans is laser-mediated cutting, or axotomy. During axotomy, a fluorescently-labeled neuronal process is severed using high-energy pulses. Initially, neuronal regeneration in C. elegans was examined using an amplified femtosecond laser(5). However, subsequent regeneration studies have shown that a conventional pulsed laser can be used to accurately sever neurons in vivo and elicit a similar regenerative response(1,3,7). We present a protocol for performing in vivo laser axotomy in the worm using a MicroPoint pulsed laser, a turnkey system that is readily available and that has been widely used for targeted cell ablation. We describe aligning the laser, mounting the worms, cutting specific neurons, and assessing subsequent regeneration. The system provides the ability to cut large numbers of neurons in multiple worms during one experiment. Thus, laser axotomy as described herein is an efficient system for initiating and analyzing the process of regeneration.


Asunto(s)
Axotomía/métodos , Caenorhabditis elegans/anatomía & histología , Terapia por Láser/métodos , Neuronas/citología , Animales , Axotomía/instrumentación , Terapia por Láser/instrumentación
14.
Dev Cell ; 18(6): 961-72, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20627078

RESUMEN

The body muscles of Caenorhabditis elegans extend plasma membrane extensions called muscle arms to the midline motor axons to form the postsynaptic membrane of the neuromuscular junction. Through a screen for muscle arm development defective (Madd) mutants, we previously discovered that the UNC-40/DCC guidance receptor directs muscle arm extension through the Rho-GEF UNC-73. Here, we describe a gene identified through our mutant screen called madd-2, and show that it functions in an UNC-40 pathway. MADD-2 is a C1-TRIM protein and a homolog of human MID1, mutations in which cause Opitz Syndrome. We demonstrate that MADD-2 functions cell autonomously to direct muscle and axon extensions to the ventral midline of worms. Our results suggest that MADD-2 may enhance UNC-40 pathway activity by facilitating an interaction between UNC-40 and UNC-73. The analogous phenotypes that result from MADD-2 and MID1 mutations suggest that C1-TRIM proteins may have a conserved biological role in midline-oriented developmental events.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Moléculas de Adhesión Celular/metabolismo , Proteínas de Microtúbulos/metabolismo , Sistema Nervioso/embriología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Tipificación del Cuerpo/fisiología , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/aislamiento & purificación , Moléculas de Adhesión Celular/genética , Diferenciación Celular/fisiología , Lateralidad Funcional/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Humanos , Proteínas de Microtúbulos/genética , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Músculo Estriado/citología , Músculo Estriado/embriología , Músculo Estriado/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Unión Neuromuscular/citología , Unión Neuromuscular/embriología , Unión Neuromuscular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/aislamiento & purificación , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas
15.
Development ; 136(6): 911-22, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19211675

RESUMEN

The postsynaptic membrane of the embryonic neuromuscular junction undergoes a dramatic expansion during later development to facilitate the depolarization of larger muscles. In C. elegans, the postsynaptic membrane resides at the termini of plasma membrane extensions called muscle arms. Membrane extension to the motor axons during larval development doubles the number of muscle arms, making them a tractable model to investigate both postsynaptic membrane expansion and guided membrane extension. To identify genes required for muscle arm extension, we performed a forward screen for mutants with fewer muscle arms. We isolated 23 mutations in 14 genes, including unc-40/Dcc, which encodes a transmembrane receptor that guides the migration of cells and extending axons in response to the secreted UNC-6/Netrin spatial cue. We discovered that UNC-40 is enriched at muscle arm termini and functions cell-autonomously to direct arm extension to the motor axons. Surprisingly, UNC-6 is dispensable for muscle arm extension, suggesting that UNC-40 relies on other spatial cues to direct arm extension. We provide the first evidence that the guanine-nucleotide exchange factor UNC-73/Trio, members of the WAVE actin-polymerization complex, and a homolog of the focal adhesion complex can function downstream of UNC-40 to direct membrane extension. Our work is the first to define a pathway for directed muscle membrane extension and illustrates that axon guidance components can play key roles in postsynaptic membrane expansion.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular/metabolismo , Sinapsis/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adhesión Celular/genética , Regulación del Desarrollo de la Expresión Génica , Músculos/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Netrinas
16.
BMC Bioinformatics ; 9: 463, 2008 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-18959798

RESUMEN

BACKGROUND: The rapid annotation of genes on a genome-wide scale is now possible for several organisms using high-throughput RNA interference assays to knock down the expression of a specific gene. To date, dozens of RNA interference phenotypes have been recorded for the nematode Caenorhabditis elegans. Although previous studies have demonstrated the merit of using knock-down phenotypes to predict gene function, it is unclear how the data can be used most effectively. An open question is how to optimally make use of phenotypic observations, possibly in combination with other functional genomics datasets, to identify genes that share a common role. RESULTS: We compared several methods for detecting gene-gene functional similarity from phenotypic knock-down profiles. We found that information-based measures, which explicitly incorporate a phenotype's genomic frequency when calculating gene-gene similarity, outperform non-information-based methods. We report the presence of newly predicted modules identified from an integrated functional network containing phenotypic congruency links derived from an information-based measure. One such module is a set of genes predicted to play a role in regulating body morphology based on their multiply-supported interactions with members of the TGF-beta signaling pathway. CONCLUSION: Information-based metrics significantly improve the comparison of phenotypic knock-down profiles, based upon their ability to enhance gene function prediction and identify novel functional modules.


Asunto(s)
Caenorhabditis elegans/genética , Biología Computacional/métodos , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes/fisiología , Genes/fisiología , Animales , Caenorhabditis elegans/fisiología , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Genes de Helminto/fisiología , Genómica/métodos , Humanos , Almacenamiento y Recuperación de la Información , Modelos Genéticos , Fenotipo , Interferencia de ARN
17.
J Biol ; 6(3): 8, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17897480

RESUMEN

BACKGROUND: Understanding gene function and genetic relationships is fundamental to our efforts to better understand biological systems. Previous studies systematically describing genetic interactions on a global scale have either focused on core biological processes in protozoans or surveyed catastrophic interactions in metazoans. Here, we describe a reliable high-throughput approach capable of revealing both weak and strong genetic interactions in the nematode Caenorhabditis elegans. RESULTS: We investigated interactions between 11 'query' mutants in conserved signal transduction pathways and hundreds of 'target' genes compromised by RNA interference (RNAi). Mutant-RNAi combinations that grew more slowly than controls were identified, and genetic interactions inferred through an unbiased global analysis of the interaction matrix. A network of 1,246 interactions was uncovered, establishing the largest metazoan genetic-interaction network to date. We refer to this approach as systematic genetic interaction analysis (SGI). To investigate how genetic interactions connect genes on a global scale, we superimposed the SGI network on existing networks of physical, genetic, phenotypic and coexpression interactions. We identified 56 putative functional modules within the superimposed network, one of which regulates fat accumulation and is coordinated by interactions with bar-1(ga80), which encodes a homolog of beta-catenin. We also discovered that SGI interactions link distinct subnetworks on a global scale. Finally, we showed that the properties of genetic networks are conserved between C. elegans and Saccharomyces cerevisiae, but that the connectivity of interactions within the current networks is not. CONCLUSIONS: Synthetic genetic interactions may reveal redundancy among functional modules on a global scale, which is a previously unappreciated level of organization within metazoan systems. Although the buffering between functional modules may differ between species, studying these differences may provide insight into the evolution of divergent form and function.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Genéticos , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...